Enhanced Delivery of Therapeutic siRNA into Glioblastoma Cells Using Dendrimer-Entrapped Gold Nanoparticles Conjugated with β-Cyclodextrin

نویسندگان

  • Jieru Qiu
  • Lingdan Kong
  • Xueyan Cao
  • Aijun Li
  • Ping Wei
  • Lu Wang
  • Serge Mignani
  • Anne-Marie Caminade
  • Jean-Pierre Majoral
  • Xiangyang Shi
چکیده

We describe a safe and highly effective non-viral vector system based on β-cyclodextrin (β-CD)-modified dendrimer-entrapped gold nanoparticles (Au DENPs) for improved delivery small interfering RNA (siRNA) to glioblastoma cells. In our approach, we utilized amine-terminated generation 5 poly(amidoamine) dendrimers partially grafted with β-CD as a nanoreactor to entrap Au NPs. The acquired β-CD-modified Au DENPs (Au DENPs-β-CD) were complexed with two different types of therapeutic siRNA (B-cell lymphoma/leukemia-2 (Bcl-2) siRNA and vascular endothelial growth factor (VEGF) siRNA). The siRNA compression ability of the Au DENPs-β-CD was evaluated by various methods. The cytocompatibility of the vector/siRNA polyplexes was assessed by viability assay of cells. The siRNA transfection capability of the formed Au DENPs-β-CD vector was evaluated by flow cytometric assay of the cellular uptake of the polyplexes and Western blot assays of the Bcl-2 and VEGF protein expression. Our data reveals that the formed Au DENPs-β-CD carrier enables efficiently delivery of siRNA to glioma cells, has good cytocompatibility once complexed with the siRNA, and enables enhanced gene silencing to inhibit the expression of Bcl-2 and VEGF proteins. The developed Au DENPs-β-CD vector may be used for efficient siRNA delivery to different biosystems for therapeutic purposes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Peptide Derived from Scorpion Toxin on Enhanced Permeability of Doxorubicin Conjugated Gold Nanoparticles in HeLa and MDA-MB-231 Cells

Background: Cell penetrating peptides (CPPs) can enter a cell through the cell membrane, and used in the fields of drug delivery, gene therapy, and cancer therapy by their property transporting various molecules into cytoplasm. Gold nanospheres (GNSs) are a useful tool for molecular imaging, because they are not cytotoxic and have high solubility, excellent light scattering property and ease of...

متن کامل

Multifunctional PEI-entrapped gold nanoparticles enable efficient delivery of therapeutic siRNA into glioblastoma cells.

RNA interference (RNAi) has been considered as a promising strategy for effective treatment of cancer. However, the easy degradation of small interfering RNA (siRNA) limits its extensive applications in gene therapy. For safe and effective delivery of siRNA, a novel vector system possessing excellent biocompatibility, highly efficient transfection efficiency and specific targeting properties ha...

متن کامل

Anisamide-targeted cyclodextrin nanoparticles for siRNA delivery to prostate tumours in mice.

A hepta-guanidino-β-cyclodextrin (G-CD), its hepta-PEG conjugate (G-CD-PEG), and the corresponding anisamide-terminated PEG conjugate (G-CD-PEG-AA) have been synthesised and compared as delivery vectors for siRNA to prostate cancer cells and tumours in vivo. The G-CD-PEG-AA.siRNA formulations (in which anisamide targets the sigma receptor), but not the non-targeted formulations, induced prostat...

متن کامل

Engineering Nano-aggregates: β-Cyclodextrin Facilitates the Thiol-Gold Nanoparticle Self-Assembly

The structure and morphology of nonmaterial formed by colloidal synthesis represent a subject of interest as it is a factor deciding the physicochemical properties and biological applications of nanostructures. Among various nanoparticles, gold can develop fractal assembled patterns. Herein, we report a nano-aggregate of a thiol-on-gold self-assembled structure and the influence of β-cyclodextr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2018